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Abstract
Alzheimer's disease (AD) is a highly heritable disease. The morphological changes of 
cortical cortex (such as, cortical thickness and surface area) in AD always accompany 
by the change of the functional connectivity to other brain regions and influence the 
short-  and long- range brain network connections, causing functional deficits of AD. 
In this study, the first hypothesis is that genetic variations might affect morphology- 
based brain networks, leading to functional deficits; the second hypothesis is that 
protein– protein interaction (PPI) between the candidate proteins and known inter-
acting proteins to AD might exist and influence AD. 600 470 variants and structural 
magnetic resonance imaging scans from 175 AD patients and 214 healthy controls 
were obtained from the Alzheimer's Disease Neuroimaging Initiative- 1 database. 
A co- sparse reduced- rank regression model was fit to study the relationship be-
tween non- synonymous mutations and morphology- based brain networks. After 
that, PPIs between selected genes and BACE1, an enzyme that was known to be 
related to AD, are explored by using molecular dynamics (MD) simulation and co- 
immunoprecipitation (Co- IP) experiments. Eight genes affecting morphology- based 
brain networks were identified. The results of MD simulation showed that the PPI 
between TGM4 and BACE1 was the strongest among them and its interaction was 
verified by Co- IP. Hence, gene variations influence morphology- based brain networks 
in AD, leading to functional deficits. This finding, validated by MD simulation and Co- 
IP, suggests that the effect is robust.

K E Y W O R D S
Alzheimer's disease, brain morphology, brain network, gene variations, protein– protein 
interaction

www.wileyonlinelibrary.com/journal/jnc
https://orcid.org/0000-0002-2477-3695
mailto:
mailto:
http://scicrunch.org
mailto:linnanqia@126.com
mailto:zhuxiaohui@sztu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjnc.15761&domain=pdf&date_stamp=2023-01-23


2  |    XIONG et al.

1  |  INTRODUC TION

Alzheimer's disease (AD) is the leading cause of dementia globally, 
and several deficits, such as memory, attention, executive, visuo-
spatiality, and language, are observed in patients with AD. More 
and more previous findings suggest that functional deficits in pa-
tients with AD are associated with their underlying brain struc-
ture (morphology) (Avila Villanueva et al., 2022). For example, 
some changed brain morphological features, like reduced cortical 
thickness and surface area in some brain regions, were related 
with these deficits (Delbeuck et al., 2003; Thiebaut de Schotten 
et al., 2011; Yang et al., 2019). After that, the coordinated changes 
in brain morphology (such as, the visual system components) are 
found to exist between regions of functional (such as, the visual 
ability) or anatomical connected systems (Andrews et al., 1997; 
Zamora- López et al., 2011). However, these studies only focused 
on the change of a specific brain region's morphology, without 
considering the function of the brain as an interconnected unity. 
To describe the brain functional connectivity between structur-
ally and functionally linked brain regions, large- scale brain net-
works have been identified by leveraging Connectomics to trace 
functional connectivity (Fauvel et al., 2014; Van Den Heuvel & 
Pol, 2010). For example, Yeo et al. divided the cerebral cortex into 
seven brain networks: visual, somatomotor, dorsal motor, ventral 
attention, limbic, and frontoparietal networks, and the default 
mode network (DMN) by using the average resting- state fMRI 
imaging connectivity data from 1000 subjects (Yeo et al., 2011). 
Based on this, numbers of studies found out that the morpholog-
ical alternation in the cortical structure of some brain regions are 
always accompany by the change of the functional connectivity 
to other brain regions and influence the short-  and long- range 
brain networks connection, causing functional impairments of AD 
(Fagerholm et al., 2015) (He et al., 2008; Thiebaut de Schotten 
et al., 2020). Therefore, a tight relationship between brain struc-
ture and brain networks might exist (Honey et al., 2007).

While understanding of using the structure and function of brain 
networks to represent connections between regions is advanced, 
the potential risk factors that impact brain disconnection and dys-
function remain unexplored in the highly heritable disease AD (Kim 
et al., 2022; Martens et al., 2022; Stepler et al., 2022). Previous 
GWAS studies have revealed a bidirectional interplay between 
the genetic profile and neurological network connectivity (Palk 
et al., 2020). Chhatwal, J. P. et al. observed alterations in DMN con-
nectivity in both symptomatic and asymptomatic carriers of patho-
genic mutations of presenilin- 1, presenilin- 2, and amyloid precursor 
protein (APP) (Chhatwal et al., 2013). The clusterin gene has been 
reported to consistently affect the changing patterns of the DMN 
in subjects at high risk of AD (Ye et al., 2017). However, structural 
and brain network changes are analyzed separately in most of these 
studies. Hence, after constructing the large- scale brain networks by 
using some brain morphological features from MRI, we firstly hy-
pothesis that genetic variations might act on the brain functional 
connectivity across brain regions are introduced in our study.

To determine the molecular structure- to- function of the po-
tential proteins in AD, dynamics and structure of proteins from 
molecular dynamics (MD) simulation can be further analyzed by 
applying the protein– protein interactions (PPIs) which is inferred 
by using information from known interacting proteins to AD 
(Chong et al., 2021). More than 80% of PPIs are established to 
construct metabolic and signal pathways to get functions (Keskin 
et al., 2016). Dysfunction and malfunction of pathways and alter-
ations in PPIs have shown to be related to some diseases, like neu-
rodegenerative disease (Keskin et al., 2016). β- site APP- cleaving 
enzyme- 1 (BACE1) hydrolyzes amyloid precursor protein (APP) to 
produce Aβ42, a protein known to correlate with the degree of 
dementia (Wang et al., 2018), such as AD (Armstrong et al., 2019; 
Buchete & Hummer, 2007; Vagnoni et al., 2012). PPIs between 
BACE1 and the nuclear factor kappa- B (NF- κB) are established 
to oxidative stress and inflammatory responses in AD by enhanc-
ing BACE1 transactivation and were found to promote amyloid 
production in Wang Yi- Bin and Gurdeep Marwarha (Marwarha 
et al., 2018; Yi- Bin et al., 2022). Hence, the second hypothesis of 
our study is that PPIs between the candidate proteins and BACE1 
may exist. Methods including modeling, docking and MD simula-
tion are accurate and reliable approaches to evaluate the func-
tional relevance of the predicted PPIs and the prediction of their 
realistic binding affinity. Nevertheless, using the follow- up exper-
iments like co- immunoprecipitation (Co- IP) to further validate the 
results of the PPIs is indispensable.

According to these two hypothesis, genes with non- synonymous 
mutations were screened before splitting the cerebral cortex into 
seven brain networks using structural magnetic resonance imaging 
scans. The co- sparse reduced- rank regression (CSRRR) method is 
then applied to detect the impact of selected genes on the corre-
sponding brain network. Homology modeling, molecular docking, 
MD simulations, and Co- IP, are also performed to reveal the biologi-
cal mechanisms underlying AD.

2  |  METHODS

2.1  |  Data collection

Accelerated T1- weighted structural MRI scans with 1.5 T scanners 
and approximately 600 470 variants on chromosome 1– 22 in 175 
patients with AD and 214 healthy controls (HCs) from the ADNI- 1 
datasets (http://adni.loni.usc.edu/). The investigators within the 
ADNI provided the data but did not participate in analysis or writ-
ing of this manuscript. Information about written informed or 
phone consent, all relevant ethical guidelines and/or ethics com-
mittee approvals, and policies about blind were seen in the ADNI- 1 
dataset. According to the ADNI data generation policy, samples 
were collected using blinding and only unblinded when uploaded 
to databases (https://adni.loni.usc.edu/wp- conte nt/theme s/fresh 
news- dev- v2/docum ents/clini cal/ADNI- 1_Proto col.pdf). All pro-
ject team members were blinded to the participant IDs in ADNI 
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(Zicha et al., 2022). Thus, experimental data were not linked to de-
mographic, clinical, or other biomarker data for the participants 
until after the experimental data were uploaded to the ADNI web-
site (Rowe et al., 2021). Sample sizes were estimated based on 
comparable previously published literature (Hu et al., 2018). The 
power analysis sample size (PASS) estimation of the study was per-
formed using PASS software. We calculated with alpha set at 0.05 
that 28 patients per group would give a statistical power of 90% 
to detect an 18.4 difference in the population mean difference be-
tween the groups. One hundred and seventy- five patients with AD 
and 214 HC were recruited because of the possibility of dropouts 
and all the samples met the selection criteria.

2.2  |  Participants

The two- sample Kolmogorov– Smirnov test was used to test 
whether the data follow the normal distribution. The method 
of the Levene's test was adopted to check the homogeneity of 
variance. The collinearity and mis- measured outliers were handled 
by considering the results of variance inflation factor (VIF) and 
minimum covariance determinant (MCD). To compare the differ-
ence of demographic characteristics and morphology- based brain 
networks between two groups, several two- sided parametric or 
non- parametric difference analyses were performed due to the 
distribution of the data.

2.3  |  Data pre- processing

2.3.1  |  Genetic data pre- processing

Several preliminary procedures were carried out, including quality 
control (QC), the conversion of genome coordinates into hg19, phas-
ing, and imputation on the Michigan imputation server (a web- based 
imputation service that facilitates access to new reference panels, 
https://imput ation server.sph.umich.edu/index.html#!pages/ home). 
Imputed single nucleotide polymorphisms (SNPs) with an R2 < 0.8 
were identified using BCFTOOLS (a set of tools that manipulate 
variant calls in the Variant Call Format and Binary Call Format). SNPs 
with a SNP call rate above 0.05, samples with a call rate higher than 
0.05, rare variants and low frequency variants (minor allele fre-
quency <5%), and SNPs with a disrupted Hardy– Weinberg equilib-
rium (p- value <1 × 10−5), were removed in the quality control step 
(Laurie et al., 2010). ANNOVAR (Annotate Variation), an efficient 
software tool to functionally annotate genetic variants detected 
from diverse genomes (http://www.openb ioinf ormat ics.org/annov 
ar/), was then used to perform gene functional annotation to retain 
non- synonymous mutations (Carlton et al., 2006). Principal com-
ponent analysis was also performed using the EIGENSTRAT tool, a 
popular association mapping method with good power and type I 
error control (Price et al., 2006).

2.3.2  |  Imaging data pre- processing

T1- weighted images underwent a series of automatic image pro-
cessing steps using FreeSurfer software (version 6.0, https://
surfer.nmr.mgh.harva rd.edu/). All data files were first converted 
into a compressed Massachusetts General Hospital file (MGZ) 
format. Then, a 30- step pre- processing, involving skull strip-
ping, intensity normalization, white matter segmentation, and 
reconstruction of brain morphology including the internal and 
external cortical surface, was performed. Data from one subject 
with a low- quality segmented white matter image were excluded. 
According to Yeo et al.'s functional network atlas, seven brain net-
works including visual, somatomotor, dorsal attention, ventral at-
tention, limbic, frontoparietal control, and DMN were obtained. 
Resting- state network relating to cortical thickness and surface 
area was finally extracted.

2.4  |  Statistical analysis

2.4.1  |  Association analysis between imaging 
phenotypes and genetic variants

Each network- based cortical thickness and network- based sur-
face area were separately adjusted in linear regression to con-
trol for potential confounders, including age, sex, apolipoprotein 
E epsilon 4 allele (APOE4), and significant principal components 
(PCs) which were calculated by principal component analysis 
(PCA) (Gauch Jr et al., 2019). To investigate the association with 
genetic variants and imaging phenotypes between AD and HC 
cohorts, the CSRRR model (Wen et al., 2020) was applied to ef-
ficiently and precisely detect simultaneously high- dimensional 
genetic variants (independent variables) and imaging phenotypes 
(dependent variables) via non- convex penalty. Next, a simple lin-
ear regression was fitted for each individual SNP to determine 
which brain network it most likely contributes to. In this step, the 
Bonferroni correction p- value was set to 0.05/number of com-
parison tests performed.

2.4.2  |  The effect analysis of the strongest PPI 
candidate gene on morphology- based brain network

To further explore how the selected significant SNP impacted on the 
significant brain network and brain morphology, several two- sided 
parametric or non- parametric difference analyses were performed 
including the difference of brain network and brain morphology be-
tween homozygous group and heterozygous group; the difference 
of brain network and brain morphology between AD and HC cohort 
in homozygous group or heterozygous group; the difference of brain 
network and brain morphology between homozygous group and 
heterozygous group in AD or HC cohort.
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A value of p less than 0.05 was considered to be statistically sig-
nificant in all analyses. All the statistical analyses were carried out 
using the R (version 4.1.1).

2.5  |  Experimental validation of computational 
biology and cell biology

2.5.1  |  Molecular dynamic simulation

The quality of the predicted protein structures was evaluated 
using PROCHECK (Laskowski et al., 1993) and ROSA (Wiederstein 
& Sippl, 2007) programs. The I- TASSER server (Yang et al., 2015) 
was used to model the full- length predicted protein struc-
tures, and target amino acids were mutated using Chimera 1.14 
(Pettersen et al., 2004). Docking proteins were assessed using 
High Ambiguity Driven protein– protein Docking (Dominguez 
et al., 2003). MD was carried out before neutralizing the system 
using GROMACS 2020.3 (https://manual.groma cs.org/docum 
entat ion/2020.3/relea se- notes/ 2020/2020.3.html). Next, we 
selected the OPLS- AA/L all- atom force field and the cube box, 
set the distance from the boundaries of the box, adjust NVT and 
NPT balance, and release the location restrictions. Finally, 50 ns 
procedures were implemented. The root mean square deviation, 
radius of gyration, solvent accessible surface area, and number 
of hydrogen bonds, were measured to assess system balance and 
compare the results of native and mutant protein structures. To 
determine the binding affinity of protein complexes, the overall 
High Ambiguity Driven protein– protein Docking score was used 
(Dominguez et al., 2003). And a lower score represents stronger 
binding affinity. Buried surface area (BSA), commonly used to 
measure how well a protein complex was protected from ex-
posure to the outer system, indicated that PPIs were stronger 
while interaction while the BSA was higher (Gopalakrishnan 
et al., 2019).

2.5.2  |  Co- immunoprecipitation experiment

According to the certificate of analysis, HEK 293 T cells (Cat: CRL- 
11268) obtained from the ATCC had a maximum passage number 
of 50. HEK293T cell line was not listed as a commonly misidentified 
cell line by the International Cell Line Authentication Committee. 
HEK293T cell line was always identified by short tandem repeat (STR) 
technology. HEK 293 T cell line (RRID:CVCL_4U22), Anti- Flag anti-
body (Antibodies- Online Cat# ABIN349610, RRID:AB_10771694), 
HA- Tag antibody (Vanderbilt Antibody and Protein Resource Cat# 
Anti- HA 12CA5, RRID:AB_2923038), Anti- Flag magnetic beads 
(RRID:CVCL_4U22), Anti- HA magnetic beads (MBL International 
Cat# M132- 9, RRID:AB_10693554).

HEK 293 T cells for protein extraction were transfected with both 
pcDNA3.1 (+)- Flag- BACE1 and pcDNA3.1 (+)- HA- transglutaminase 
4 (TGM4). Forty- eight hours after transfection, HEK 293 T cells were 

harvested by scraping cells into NP- 40 lysis buffer after gently wash-
ing twice with pre- chilled PBS (5 min per wash), and were then sub-
jected to Co- IP assay. After incubation, cells were centrifuged and 
the supernatant was immediately transferred to a fresh tube. After 
quantifying and diluting the total protein concentration, the cells 
were incubated overnight at 4°C with anti- Flag (or anti- HA) magnetic 
beads. Samples were washed three times after each incubation step. 
To terminate the reactions, 1 × sodium dodecyl sulfate (SDS) loading 
buffer was added and boiled for 5 min. Lysates are then subjected to 
SDS polyacrylamide gel electrophoresis (SDS- PAGE) and transferred 
to polyvinylidene fluoride membranes. The immunoprecipitated 
proteins and their binding partners are separated by SDS- PAGE for 
western blot analysis. After preparing membranes, autoradiography 
signals are detected by enhanced chemiluminescence.

3  |  RESULTS

3.1  |  Sample characteristics

The results of Kolmogorov– Smirnov test displayed that age did 
not follow the normal distribution in AD (df = 148, D = 0.0762, 
p- value = 0.352) and HC (df = 179, D = 0.105, p- value = 0.036) 
groups. The results of Levene's test suggested that age did not ful-
fill the homogeneity of variance assumption (df = 327, F = 31.595, 
p- value = 4.073 E- 08). As shown in Table S1, the result of VIF indi-
cated that there was no collinearity between variables. No outlier 
was existed according to the results of MCD. As shown in Table 1, 
the results of difference analysis between the AD and HC cohorts 
showed that no differences in sex (df = 1, χ2 = 0, p- value = 0.907), 
age (df = 387, χ2 = 18 983, p- value = 0.815), and race (df = 3, Fisher's 
Exact, p- value = 0.357) were existed. APOE4, an important genetic 
biomarker for AD pathophysiology, was significantly different be-
tween the AD and HC (df = 2, χ2 = 68.783, p- value<0.001).

In addition, Table S2 also described the results of difference 
analysis on morphology- based networks between two groups. For 
example, no significant differences of visual network in left sur-
face area were observed in AD patients while compared to the HCs 
(df = 327, t = −1.619, p- value = 0.106), and significant differences of 
visual network in right surface area between two groups were found 
(df = 327, t = −2.582, p- value < 0.05).

3.2  |  Genetic data and imaging data pre- processing

After genetic pre- processing, we retained 11 596 SNPs in 150 AD 
samples and 180 HCs. Six significant PCs were introduced as ad-
ditional variables.

One sample was removed because of the low quality of the seg-
mented white matter image. Following the identification of seven 
main functional cortical networks in each hemisphere, 14 network- 
based measures of cortical thickness and 14 network- based mea-
sures of surface area were extracted.
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3.3  |  Association between imaging phenotypes and 
genetic variants

We identified five genetic risk factors that influenced brain networks 
with regards to cortical thickness measurements: ADAMTS5, TGM4, 
RNF212, SLC1A4, and CCDC186 (see Table 2 and Figure 1a). Figure 1b 
described the association of TGM4 with the visual network.

For the network- based surface area, three genetic risk factors 
including ARMC3, ANKRD33, and F5 were found to affect brain net-
works (somatomotor, ventral attention, frontoparietal, default mode, 
somatomor) (see Table 3 and Figure 2a). Figure 2b depicted the asso-
ciation of ARMC3 with several brain networks (right somatomotor, 
left somatomotor, left ventral attention, right ventral attention, right 
frontoparietal, right default mode, left default mode).

TA B L E  1  Comparisons of demographics and clinical variables between AD and HC cohorts

AD HC Df Test statistics p- value

No. of participants, n (%) 175 (45%) 214 (55%)

Sex, n (%)

M 93 (53%) 115 (54%) 1 0 0.907

F 82 (47%) 99 (46%)

Age, Median (IQR) 75.8 (70.85, 81.10) 75.5 (72.12, 78.38) 387 18 983 0.815

Race, n (%)

Asian 2 (1) 2 (1) 3 Fisher's Exact 0.357

Black 8 (5) 15 (7)

More than one 2 (1) 0 (0)

White 163 (93) 197 (92)

APOE4, n (%)

0 58 (33) 156 (73) 2 68.783 <0.001

1 85 (49) 53 (25)

2 32 (18) 5 (2)

Note: APOE4 was coded as the number of epsilon 4 alleles (0, 1, or 2). Degrees of freedom (df).

Gene_Name rs_number Variant_ID Network_Name

ADAMTS5 rs2830585 21- 28 305 212- C- T Visual (L)

ADAMTS5 rs2830585 21- 28 305 212- C- T Dorsal attention (L)

ADAMTS5 rs2830585 21- 28 305 212- C- T Dorsal attention (R)

ADAMTS5 rs2830585 21- 28 305 212- C- T Visual (R)

ADAMTS5 rs2830585 21- 28 305 212- C- T Frontoparietal (R)

ADAMTS5 rs2830585 21- 28 305 212- C- T Ventral attention (R)

ADAMTS5 rs2830585 21- 28 305 212- C- T default mode (L)

TGM4 rs1395388 3- 44 948 674- G- C Visual (L)

RNF212 rs616196 4- 1 087 393- G- T Frontoparietal (R)

RNF212 rs615381 4- 1 087 531- T- C Frontoparietal (R)

RNF212 rs614945 4- 1 087 617- C- A Frontoparietal (R)

SLC1A4 rs759458 2- 65 245 365- G- A Ventral attention (R)

CCDC186 rs7095762 10- 115 910 928- G- T Dorsal attention (L)

CCDC186 rs1061159 10- 115 922 774- G- A Dorsal attention (L)

TGM4 rs1395388 3- 44 948 674- G- C Visual (R)

CCDC186 rs7095762 10- 115 910 928- G- T Visual (L)

CCDC186 rs1061159 10- 115 922 774- G- A Visual (L)

Note: CSRRR: Co- sparse reduced- rank regression. L: left hemisphere. R: right hemisphere.

TA B L E  2  Significant results of CSRRR 
for cortical thickness
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6  |    XIONG et al.

F I G U R E  1  The association between imaging phenotypes extracted from cortical thickness measurements and genetic variants. (n = 329 
participants). (a) The relationship between five genetic risk factors and brain networks. (b) The association of TGM4 with the visual network.

Gene_Name rs_number Variant_ID Network_Name

ARMC3 rs10828395 10- 23 297 252- G- A Somatomotor (R)

ARMC3 rs10828395 10- 23 297 252- G- A Somatomotor (L)

ARMC3 rs10828395 10- 23 297 252- G- A Ventral attention (L)

ARMC3 rs10828395 10- 23 297 252- G- A Ventral attention (R)

ARMC3 rs10828395 10- 23 297 252- G- A Frontoparietal (R)

ARMC3 rs10828395 10- 23 297 252- G- A Default mode (R)

ARMC3 rs10828395 10- 23 297 252- G- A Default mode (L)

ANKRD33 rs34494292 12- 52 284 500- A- G Somatomotor (L)

ANKRD33 rs3180417 12- 52 285 086- G- A Somatomotor (L)

F5 rs6032 1- 169 511 555- T- C Default mode (L)

F5 rs4525 1- 169 511 734- T- C Default mode (L)

F5 rs4524 1- 169 511 755- T- C Default mode (L)

Note: CSRRR: Co- sparse reduced- rank regression. L: left hemisphere. R: right hemisphere.

TA B L E  3  Significant results of CSRRR 
for surface area

F I G U R E  2  The association between imaging phenotypes extracted from surface area and genetic variants. (n = 329 participants). (a) The 
relationship between three genetic risk factors and brain networks. (b) The association of ARMC3 with several brain networks.
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3.4  |  Docking and molecular dynamics 
simulations of the selected BACE1 complex of SNPs

Table 4 presented the docking results of the interactions of the se-
lected proteins (TGM4, RNF212, ANKRD33) with BACE1. For ex-
ample, the Van der Waals interaction between TGM4 and BACE1 
for the native complexes was −22.1 ± 20.1 Kcal/mol−1, while for 
the mutant Glu437Gln (rs1395388), the Van der Waals interaction 
was −30.3 ± 17.4 Kcal/mol−1. Compared to the native Glu437Gln, 
the electrostatic interaction was lower in the mutant Glu437Gln 
(−229.5 ± 68.1 Kcal/mol−1 vs. −210.7 ± 41.1 Kcal/mol−1). For the na-
tive complex of TGM4, the BSA value was 3724.4 ± 277.5 A。2, 
while compared to 3622.4 ± 259.5 A。2 in the mutant Glu437Gln. 
Furthermore, the energy which was required to separate the com-
plexes (the desolvation energy) was higher in the native complex of 
RNF212 (−30.1 ± 2.8 Kcal/mol−1) but lower in the mutant Gln173Arg 
(−25.0 ± 4.9 Kcal/mol−1).

Figure 3 described the docking results of the interactions of se-
lected proteins with BACE1 which indicated that a potential inter-
action of BACE1 with the mature catalytic region (46– 460) in the 
TGM4. The docking analysis revealed that PPIs between wild- type 
ANKRD33 and BACE1 were stronger than the PPIs between mutant 
Val261Ile and BACE1. A potential explanation was that the electro-
static energy and BSA of wild- type ANKRD33 were lower than that 

of its mutant Val261Ile. Meanwhile, the higher desolvation energy of 
the wild- type RNF212 complex caused a higher PPIs between wild- 
type RNF212 and BACE1 than that of its mutant Gln173Arg with 
BACE1 (Gopalakrishnan et al., 2019).

The root mean square deviation (RMSD) plot revealed that there 
were no erratic fluctuations in the molecular systems and that all 
complexes were stable (Figure 4a). The radius of gyration results 
revealed that a volumetric and compactness variation was induced 
by the complex (Figure 4b). The solvent accessible surface area re-
sults for the protein structures indicated a dimensional discrepancy 
(Figure 4c). The hydrogen bond results accounted for the proteins' ri-
gidity and their ability to interact with partners (Figure 4d). Molecular 
dynamics simulation results of interactions between ANKRD33 and 
RNF212 and BACE1, respectively, are shown in the Supplementary 
Material (Figures S7 and S8). Consequently, TGM4 (NP_003232.2) 
was selected for the subsequent Co- IP experiment, because it had 
the strongest interaction with BACE1.

3.5  |  Co- immunoprecipitation

SDS- PAGE analysis detected a band for HA- TGM4 in the pull- down 
complex. Furthermore, when using a Flag rabbit polyclonal anti-
body, a Flag- BACE1 band was checked in the pull- down complex 

BACE1_
ANKRD33 BACE1_RNF212 BACE1_TGM4

HADDOCK score −16.1 ± 10.9 −4.9 ± 7.4 −22.1 ± 20.1

RMSD from the overall 
lowest- energy 
structure

24.7 ± 0.6 0.7 ± 0.4 1.1 ± 0.9

Van der Waals energy, 
Kcal/mol−1

−86.1 ± 8.1 −92.8 ± 4.5 −119.2 ± 12.4

Electrostatic energy,  
Kcal/mol−1

−287.4 ± 41.2 −217.8 ± 25.1 −229.5 ± 68.1

Desolvation energy,  
Kcal/mol−1

−2.4 ± 3.5 −30.1 ± 2.8 −1.3 ± 5.2

Buried Surface Area, A。2 2557.1 ± 109.2 3200 ± 53.7 3724.4 ± 277.5

Z- Score −1.3 −1.5 −2.3

BACE1_ANKRD33 
Val261Ile

BACE1_RNF212 
Gln173Arg

BACE1_TGM4 
Glu437Gln

HADDOCK score −16.0 ± 5.6 −14.5 ± 11.9 −30.3 ± 17.4

RMSD from the overall 
lowest- energy 
structure

15.0 ± 0.3 0.6 ± 0.4 1.1 ± 0.9

Van der Waals energy, 
Kcal/mol−1

−81.8 ± 1.9 −105.0 ± 4.7 −113.7 ± 13.7

Electrostatic energy,  
Kcal/mol−1

−139.0 ± 22.9 −190.4 ± 16.3 −210.7 ± 41.1

Desolvation energy,  
Kcal/mol−1

−20.0 ± 3.8 −25.0 ± 4.9 −2.2 ± 6.8

Buried Surface Area, A。2 2612.4 ± 113.3 3705.4 ± 30.5 3622.4 ± 259.5

Z- Score −0.9 −2 −2.5

Note: CSRRR: Co- sparse reduced- rank regression. L: left hemisphere. R: right hemisphere.

TA B L E  4  The docking results of the 
interactions of selected proteins with 
BACE1
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8  |    XIONG et al.

(Figure 5). These findings provided evidence for PPIs between 
BACE1 and TGM4.

3.6  |  The effect analysis of the strongest PPI 
candidate gene on morphology- based brain network

The results of the difference of morphology- based brain net-
work between homozygous group and heterozygous group 
suggested that homozygous individuals had smaller visual net-
work cortical thickness volume in left and right hemisphere 

than that of heterozygous individuals (Figure 6A, df = 327, 
bd.constantleft = 0.0421, p = 0.01; bd.constantright = 0.0188, 
p = 0.07). The results of the difference of morphology- based brain 
network between AD and HC cohort in homozygous group indi-
cated that cortical thickness in both left and right visual networks 
of AD was different from that of HC (top of Figure 6B, df = 280, 
χ2

left = 5967.5, p < 0.001; χ2
right = 5618, p < 0.001). The results 

of the difference of morphology- based brain network between 
AD and HC cohort in heterozygous group showed that cortical 
thickness in the right visual networks of AD differed from that 
of HC (bottom of Figure 6B, df = 44, t = −2.281, p = 0.03). The 

F I G U R E  3  The docking results of 
selected proteins with BACE1 (n = 3 
different proteins).
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    |  9XIONG et al.

results of the difference of morphology- based brain network 
between homozygous group and heterozygous group in AD dis-
played that cortical thickness in the left visual networks of pa-
tients with homozygous was different from that of patients with 
heterozygous (top of Figure 6C, df = 147, bd.constant = 0.0800, 
p = 0.03). The results of the difference of morphology- based brain 
network between homozygous group and heterozygous group in 
HC cohort suggested that there was no significant difference of 
cortical thickness in visual network between two groups (bot-
tom of Figure 6C, df = 177, bd.constantleft = 0.0259, p > 0.05; 
bd.constantright = 0.0165, p > 0.05).

Some other significant different brain networks in other brain 
regions are depicted in Figure 6D. Furthermore, detailed differ-
ence analysis results are displayed in the supplementary material 
(Tables S3– S7).

4  |  DISCUSSION

The results of our morphology- based brain networks analysis showed 
TGM4, DAMTS- 5, RNF212, CCDC186, and SLC1A4 had influence 

on five cortical thickness- based brain networks (the visual network, 
DMN, dorsal attention network, ventral attention network, and 
frontoparietal control network). Four cortical surface brain networks 
(the somatomotor network, ventral attention network, frontopari-
etal control network, and DMN) were also influenced by ARMC3, 
ANKRD33, and F5. Most of these results were coincident with 
some previous studies (Bajaj et al., 2017; Palaniyappan et al., 2020; 
Zhao et al., 2022). For example, RNF112 and ANKRD32 are identi-
fied by Walker, R.L. et al. (Walker et al., 2019) and Zhao et al. (Zhao 
et al., 2022), showing these genes play key roles in biology process 
of brain development and healthy aging (Zhao et al., 2022). Likewise, 
these results are coincided with our study because RNF112 and 
RNF212 belong to the same family, so do ANKRD32 and ANKRD33.

MD simulations have succeeded in revealing the mechanisms 
of protein aggregation associated with neurodegenerative disor-
ders (Hollingsworth & Dror, 2018). Moreover, combing MD simula-
tion and Co- IP experiment is a valuable way to explore molecular 
properties which are difficult or impossible to investigate only by 
some wet- laboratory experiments. In the present study, homology 
modeling, molecular docking, and MD simulation results suggested 
that TGM4, RNF212, and ANKRD33 exhibits functional interactions 

F I G U R E  4  The MD results for TGM4 wild- type (blue line) and TGM4 mutants (red line). (a: RMSD plot revealed that all complexes were 
stable after 15 ns. b: Rg plots showed higher Rg in mutants than in wild- type in 10– 30 ns. c: shows SASA variations observed during 50 ns. d: 
shows H- bonds variations observed during 50 ns. n = 1 BACE_TGM4 protein complex).
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10  |    XIONG et al.

with BACE1. The bioinformatics analysis provides insight into the act 
of these interactions on certain brain regions. For example, TGM4 
(Transglutaminase- 4) is a member of transglutaminase family which 
may contribute to amyloid deposition in the insula of cerebral cortex 
in Alzheimer's disease (Dudek & Johnson, 1994; Gentile et al., 1995). 
RNF212 can encode an E3 enzyme in the ubiquitin proteasome sys-
tem whose dysfunction could lead to Aβ accumulation in basal gan-
glia, cerebral cortex, hippocampal, and amygdala (Wang et al., 2021). 
ANKRD33 has been described to be involved in a variety of func-
tions, such as cell– cell signaling and cytoskeleton structure in cere-
bral cortex and retina (Rostamirad, 2010). These results indicated 
that these genes could affect Aβ production by altering and regulat-
ing BACE1 activity, and spatial patterns of Aβ deposition in AD pa-
tients affect brain network function. In addition, TGM4 showed the 
strongest PPIs with BACE1 and its interaction was further confirmed 
by Co- IP experiments. This suggests that TGM4 may mediate the re-
modeling of the extracellular matrix (ECM) and stiffen the vessel wall 
through interacts with BACE1, a structure that connects the ECM 
and cleaves APP to produce Aβ (Farris et al., 2021; Tan et al., 2020; 
Theocharis et al., 2016; Zhang & Song, 2013), thus resulting in an 

impaired clearance of Aβ from the brain and leading to brain atrophy 
(Jellinger & Attems, 2005; Wilhelmus et al., 2012). This is consistent 
with study of De Jager et al. (de Jager et al., 2013).

5  |  LIMITATIONS AND FUTURE 
DIREC TIONS

A noteworthy limitation of this study was that only BACE1 was se-
lected as the known interacting protein in MD simulation and Co- IP 
experiments. If other AD- related proteins besides BACE1, for ex-
ample, ApoE or presenilin, are introduced, it might be possible to 
identify more genes that are involved in AD. Inconsistencies in types 
of the MRI scanner across laboratory centers and the small sample 
size are also the limitation in our study.

Series studies on morphology- based brain networks analysis, 
MD simulation, and CO- IP experiments were preliminary. Although 
further validation studies including animal experiments and clinical 
trials are beyond our expertise, it is very important for us to learn 
how to deal with them in the future.

F I G U R E  5  SDS- PAGE results showing the interaction between TGM4 and BACE1 (maximum number of passages: n = 50).
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    |  11XIONG et al.

6  |  CONCLUSIONS

Together, the present study strongly suggests that genetic coordi-
nated changes in morphological features (cortical thickness and cor-
tical surface) are biologically meaningful, thus potentially opening up 
a new window into our understanding of cortical organization in AD.
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